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Abstract
It is known that the lengths of closed geodesics of an arithmetic hyperbolic orbifold
are related to Salem numbers. We initiate a quantitative study of this phenomenon.
We show that any non-compact arithmetic 3-dimensional orbifold defines cQ1/2 +
O(Q1/4) square-rootable Salem numbers of degree 4 which are less than or equal to
Q. This quantity can be compared to the total number of such Salem numbers, which
is shown to be asymptotic to 4

3Q
3/2+O(Q). Assuming the gap conjecture ofMarklof,

we can extend these results to compact arithmetic 3-orbifolds. As an application, we
obtain lower bounds for the strong exponential growth of mean multiplicities in the
geodesic spectrum of non-compact even dimensional arithmetic orbifolds. Previously,
such lower bounds had only been obtained in dimensions 2 and 3.
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1 Introduction

A Salem number is a real algebraic integer λ > 1 such that all of its Galois conjugates
except λ−1 have absolute value equal to 1. In this article, the definition of Salem
numbers will also include numbers of degree 2, namely, real algebraic λ > 1 with a
single conjugate λ−1. Salem numbers appear in many areas of mathematics including
algebra, geometry, dynamical systems, and number theory. They are closely related
to the celebrated Lehmer’s problem about the smallest Mahler measure of a non-
cyclotomic polynomial. We refer to Smyth (2015) for a survey of research on Salem
numbers.

It has been known for some time that the exponential lengths of the closed geodesics
of an arithmetic hyperbolic n-dimensional manifold or orbifold are given by Salem
numbers. For n = 2 and 3 this relation is described in the book by Maclachlan and
Reid (2003, Chapter 12). More recently, it was elaborated upon and generalized to
higher dimensions by Emery et al. (2019). In particular, their Theorem 1.1 implies
that, for a non-compact arithmetic hyperbolic n-orbifoldO, a closed geodesic of length
� corresponds to a Salem number λ = e� if the dimension n is even, and to a so called
square-rootable Salemnumberλ = e2� if n is odd. The degrees of these Salemnumbers
satisfy deg(λ) ≤ n + 1. Following this line, we will say that an arithmetic hyperbolic
n-orbifold O which has a closed geodesic of length � generates a Salem number
λ = e((n mod 2)+1)�. A natural question arises: What proportion of Salem numbers of
a given degree are generated by a fixed orbifold O?

To this end, let us recall some results about the distribution of algebraic integers.
This field has a long history, so we will mention only the more recent results which are
relevant to our work. In a beautiful paper, Thurston (2014), motivated by the study of
entropy of one-dimensional dynamical systems, encountered limiting distributions of
conjugates of Perron numbers, a class which includes Salem numbers as a subset. His
experiments led to a set of interesting problems and conjectures, some of which were
successfully resolved by Calegari and Huang (2017). Later on, some ideas from their
approach helped Götze and Gusakova (2019) to compute the asymptotic growth of
Salem numbers. The precise form of their result is given in Theorem 4. It is remarkable
that this result was established only very recently, as it allows us to play the asymp-
totic formula against the distribution of closed geodesics of an arithmetic n-orbifold.
We also come up with a related question about the distribution of square-rootable
Salem numbers. We were able to answer these questions in the first non-trivial case,
when the degree of the Salem numbers is 4 and the corresponding dimension of the
arithmetic orbifolds is 3. For higher even dimensions, the interplay between count-
ing Salem numbers and the prime geodesic theorems (Margulis 1969; Gangolli and
Warner 1980) allows us to prove lower bounds for the strong exponential growth of
mean multiplicities in the geodesic spectrum.

In this paper we prove the following theorems:

Theorem 1 Let OD be a non-compact arithmetic hyperbolic 3-orbifold associated to
a Bianchi group �D = PSL(2, oK ), where oK is the ring of integers of an imaginary
quadratic number field K = Q(

√−D), and D is a square-free positive integer. Then
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OD generates

cQ1/2 + O(Q1/4)

square-rootable Salem numbers of degree 4 which are less or equal to Q, where
c = π

4
√
D
if D ≡ 1, 2 mod 4 and c = π

2
√
D
if D ≡ 3 mod 4.

Theorem 2 The number of Salem numbers of degree 4 that are square-rootable over
Q and less than or equal to Q is

4

3
Q3/2 + O(Q).

This theorem together with a special case of the theorem of Götze and Gusakova
implies that, in the logarithmic scale, a given 3-orbifoldOD generates asymptotically
1/4 of all Salem numbers of degree 4 and asymptotically 1/3 of the square-rootable
Salem numbers of degree 4.

The proof of Theorem 1 uses the work of Marklof (1996) on multiplicities in
length spectra of arithmetic hyperbolic 3–orbifolds. For proving Theorem 2 we take
advantage of some special properties of Salem numbers of degree 4. Extending these
results to higher degrees would require an extension of Marklof’s length spectrum
asymptotic to arithmetic orbifolds of dimension greater than 3 and an analogue of the
Götze–Gusakova theorem for square-rootable Salem numbers of higher degree.

While we do not handle the higher-dimensional case in this paper, we are able to
extend Theorem 1 to compact arithmetic 3-orbifolds and associated Salem numbers
of degree 4d, d ≥ 1, square-rootable over an intermediate field L of degree d—
see Theorem 10. Finally, we show how to apply our methods to prove lower bounds
for the strong exponential growth of mean multiplicities in the geodesic spectrum of
non-compact even dimensional arithmetic orbifolds. Namely, we prove:

Proposition 3 LetO be a non-compact arithmetic hyperbolic orbifold of even dimen-
sion n ≥ 4. Then the mean multiplicities in the length spectrum of O have a strong
exponential growth rate of at least

〈g(�)〉 ∼ c
e( n2−1)�

�
, � → ∞,

where c is a positive constant.

Results of this nature were previously known only for arithmetic orbifolds of dimen-
sions 2 and 3.

The paper is organized as follows. In Sect. 2 we recall definitions and some prop-
erties of Salem numbers and arithmetic groups. In Sect. 3 we prove Theorems 1 and
2. In Sect. 4 we prove Theorem 10. In Section 5 we consider other dimensions, prove
Proposition 3, and discuss some open problems.
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556 M. Belolipetsky et al.

2 Preliminaries

2.1 SalemNumbers

A Salem number is a real algebraic integer λ > 1 such that all of its Galois conjugates
have absolute value less than or equal to 1, and at least one of them has absolute value
equal to 1. For convenience in this paper we will also allow Salem numbers to have
degree 2 (where λ has λ−1 as its only conjugate). We do this so that our definition of
Salem numbers aligns with that used in Emery et al. (2019).

When deg(λ) > 2, let λ′ denote a Galois conjugate of the Salem number λ with
|λ′| = 1. Since λ′ and its complex conjugate λ′ = (λ′)−1 are Galois conjugates we
conclude that the minimal polynomial pλ of a Salem number λ is self-reciprocal,
i.e., pλ(x) = xdeg(pλ) pλ(x−1). This means that its coefficients form a palindromic
sequence. Moreover, the polynomial pλ is of even degree n = 2(m + 1) because
otherwise pλ(−1) = −pλ(−1) = 0, which contradicts its irreducibility. Thus, all
Galois conjugates of a Salem number λ (except for λ−1) have absolute value 1 and lie
on the unit circle in the complex plane.

The celebrated Lehmer’s problem asks about the existence of a smallest Salem
number λ > 1 and gives the conjectural candidate λ = 1.176 . . . of degree 10 found
by D. Lehmer (1933). We refer to Smyth (2015) and the references therein for more
about Lehmer’s problem. In this paper we will be interested in a somewhat opposite
question about how quickly the number of Salem numbers grows when their values
tend to infinity.

We denote by Salm the set of all Salem numbers of degree 2(m + 1) and let

Salm(Q) := {λ ∈ Salm : λ ≤ Q}.

It is not hard to find examples of Salemnumbers of any even degree. One of the basic
facts proved by Salem is that if λ is a Salem number of degree n, then so is λk for all
k ∈ N (see Smyth 2015, Lemma 2). This implies that the counting function #Salm(Q)

grows at least as fast as c log Q. However, the actual growth of Salem numbers is much
faster. A precise result for their asymptotic growth was recently proved by Götze and
Gusakova:

Theorem 4 (Götze and Gusakova 2019, Theorem 1.1) For any positive integer m we
have

#Salm(Q) = ωmQ
m+1 + O(Qm),

as Q → ∞, where

ωm := 2m(m+1)

m + 1

m−1∏

k=0

k!2
(2k + 1)! .

We remark for future reference that ω1 = 2.
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Counting Salem Numbers of Arithmetic... 557

In this paper, we will encounter a special class of Salem numbers that are called
square-rootable.

Definition 5 Let λ be a Salem number, let L be a subfield ofQ(λ+λ−1), and let p(x)
be the minimal polynomial of λ over L . We say that λ is square-rootable over L via
α if there exist a totally positive element α ∈ L and a monic palindromic polynomial
q(x), whose even degree coefficients are in L and whose odd degree coefficients are
in

√
αL , such that q(x)q(−x) = p(x2).

The square-rootable Salem numbers were first defined by Emery et al. (2019). They
are of interest because they are associated to geodesic lengths of odd-dimensional
arithmetic orbifolds.

2.2 Arithmetic Orbifolds

Let us recall the definition of an arithmetic Kleinian group. Let K be a number field
with exactly one complex place, oK its ring of integers, and A a quaternion algebra
over K ramified at all real places of K . Let D be an oK -order of A, and denote by
D1 its group of elements of norm 1. Consider a K -embedding ρ : A ↪→ M(2,C)

associated with the complex place of K . The group

�D = Pρ(D1) < PSL(2,C),

where P : SL(2,C) → PSL(2,C) is the natural projection, is then a discrete finite
covolume subgroup of PSL(2,C). Following Marklof (1996), we will call �D an
arithmetic quaternion group. A subgroup � < PSL(2,C) which is commensurable
with some such group �D is called an arithmetic Kleinian group. The associated
quotient space O = H3/� is an arithmetic hyperbolic 3-orbifold.

Arithmetic hyperbolic orbifolds can be compact or non-compact with cusps and
finite volume. In dimension 3 the non-compact orbifolds correspond to the arithmetic
Kleiniangroupswhich are commensurablewith theBianchi groups�D = PSL(2, oK ),
where oK is the ring of integers of an imaginary quadratic number field K = Q(

√−D)

and D is a square-free positive integer (cf.Maclachlan and Reid 2003, Theorem 8.2.3).
An important subclass of arithmetic groups of hyperbolic isometries is defined by

admissible quadratic forms. For this definition let L be a totally real number field with
ring of integers oL , and let f be a quadratic formof signature (n, 1) defined over L such
that, for every non-identity embedding σ : L → R, the form f σ is positive definite.
The group � = O0( f , oL) of integral automorphisms of f is a discrete subgroup of
O0(n, 1), which is the full group of isometries of the hyperbolic n-spaceHn (the group
O0(n, 1) is the subgroup of the orthogonal group O(n, 1) that preserves the upper cone
in the vector model of Hn). Using reduction theory, one can show that such groups �

have finite covolume. The groups � obtained in this way and subgroups of Isom(Hn)

which are commensurable with them are called arithmetic subgroups of the simplest
type.

It is a well-known consequence ofWeil (1961) that every non-cocompact arithmetic
� in dimension n 
= 7 is commensurable with the group of units of a quadratic form
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558 M. Belolipetsky et al.

over Q. A more careful analysis implies that the same is true for n = 7 but we will
not consider this case here. For the purpose of this paper we record a corollary that the
Bianchi groups are arithmetic subgroups of the simplest type. Indeed, it is not hard
to write down the corresponding quadratic forms for each �D , which we leave as an
exercise for the interested reader.

3 Proof of Theorems 1 and 2

3.1 Proof of Theorem 1

In Emery et al. (2019), the following result was obtained.

Theorem 6 (cf. Emery et al. 2019, Theorem 1.6) Let � ⊆ Isom(Hn) be an arithmetic
lattice, with n odd, of the simplest type defined over a totally real number field L. Let
γ be a hyperbolic element of �, and let λ = e2�(γ ). Then λ is a Salem number which
is square-rootable over L.

Recall from the previous section that in dimension n = 3 the Bianchi groups
correspond to arithmetic lattices of the simplest type defined over L = Q.

Now recall a result of Marklof (1996) on counting geodesic lengths in the spectrum
of Bianchi orbifolds. It is important for us that the lengths are counted without multi-
plicities, as it is well-known that multiplicities in the spectrum of arithmetic orbifolds
can grow very rapidly. We have:

Theorem 7 (cf. Marklof 1996, Theorem 4(b)) Let �D = SL(2, oK ), K = Q(
√−D),

D ∈ Z>0 square-free. Then the number of distinct real lengths of closed geodesics
less than or equal to � in H3/�D is given by

Nr (�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π

4
√
D
e� + O(e�/2), D ≡ 1, 2 mod 4,

π

2
√
D
e� + O(e�/2), D ≡ 3 mod 4.

Combining Theorems 6 and 7, we obtain that a non-compact arithmetic hyperbolic
3-orbifold generates

N (Q) = Nr (
1

2
log Q) ∼ cQ1/2

square-rootable Salem numbers λ ≤ Q of degree ≤ 4, where c is the constant given
by Theorem 7.

Goingmore carefully through the proof ofMarklof’s theorem allows us to conclude
that most of these Salem numbers have degree equal to 4. Indeed, the proof of The-
orem 4(b) (loc.cit.) shows that the main contribution to the counting function Nr (�)

comes from the ellipses e(y) with y ≤ x , y /∈ Q and sums up to 1
4E(x), x = 2 cosh �
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different lengths (cf. Marklof 1996, Sect. 4 for the definition of E(x)). The corre-

sponding Salem numbers λ are square-rootable, hence deg(λ) = deg(λ
1
2 ) (by Emery

et al. 2019, Lemmas 7.4 and 7.2). On the other hand, we have λ
1
2 + λ− 1

2 = y /∈ Q,
hence deg(λ) > 2.

This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

Here, we are interested in the case where L = Q and deg(λ) = 4. We begin by
recalling the following lemma of Emery et al.:

Lemma 8 (Emery et al. (2019), Lemma 8.2 (2)) Let λ be a Salem number of degree
4 and p(x) its minimal polynomial. Then λ is square-rootable over Q if and only if
p(−1) is a square in Z.

Our goal is to count those λ’s of degree 4 that are square-rootable. Thus, we wish
to count polynomials

p(x) = x4 + ax3 + bx2 + ax + 1 ∈ Z[x]

such that

(a) p(x) is irreducible;
(b) p(x) is a Salem polynomial, that is, its roots are λ, λ−1, μ, μ−1 with λ ∈ R>1 and

μ /∈ R, |μ| = 1;
(c) p(−1) = k2 for k ∈ Z;
(d) λ ≤ Q.

We remark that k above must be different from 0, since −1 cannot be a root of p(x).
Thus we can assume that k > 0.

Condition (c) is equivalent to

2 + b − 2a = k2, for k ∈ Z, k > 0. (1)

Now we focus on condition (b). Our first observation is that

−a = λ + λ−1 + μ + μ−1 < λ + 3 ≤ Q + 3.

In addition, λ + λ−1 ≥ 2 implies that

−a = λ + λ−1 + μ + μ−1 > 0.

Therefore,

0 < −a < Q + 3. (2)
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560 M. Belolipetsky et al.

Write y = x + x−1 and consider the polynomial

r(y) = y2 + ay + b − 2.

Then it is immediate to see that x2r(x + x−1) = p(x). Condition (b) is equivalent to
asking that r(y) has two real roots, with one > 2 and the other in the interval (−2, 2).
Writing the roots as

−a ± √
a2 − 4(b − 2)

2
,

we see that we need

a2 > 4b − 8. (3)

Combining with condition (1), we have

(a − 4)2 > 4k2. (4)

In addition, we can rewrite

2 <
−a + √

a2 − 4(b − 2)

2
as 4 + a <

√
a2 − 4(b − 2), and

2 >
−a − √

a2 − 4(b − 2)

2
> −2 as 4 − a >

√
a2 − 4(b − 2) > −4 − a.

Combining the above lower bounds for the square-root, we have

a2 − 4(b − 2) > (4 + a)2, which simplifies to − 2a > 2 + b. (5)

Similarly, the upper bound gives us

(4 − a)2 > a2 − 4(b − 2), which simplifies to 2 + b > 2a,

but this condition is already a consequence of (1).
Combining (1) with (5) we obtain

k2 < −4a. (6)

Notice that −16a ≤ (a − 4)2, and therefore Eqs. (3) and (4) are consequences of (6).
In sum, we have the following conditions

b = k2 + 2a − 2, k2 < −4a, 0 < −a < Q + 3.
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The number of solutions for this is given by

Q+2∑

j=1

(
√
4 j − 1) = 2

∫ Q+2

1

√
xdx + O(Q) = 4

3
Q3/2 + O(Q).

Wehave not yet taken into account condition (a). The onlyway for p(x) to be reducible
is to have

p(x) = (x2 + αx + 1)(x2 + βx + 1)

in Z[x], where one of the factors (say, the first) is the minimal polynomial of μ. Since
|μ| = 1, we conclude that |α| < 2 and therefore the only possible values for α are
0,±1. Choosing the value of α and comparing the conditions on the coefficients a, b
of p(x), we have

α = 0 and b = 2;
α = 1 and b = a + 1;

α = −1 and 1 = a + b.

There are O(Q) choices of a and b satisfying the three equations above, which com-
pletes the proof of Theorem 2. ��

3.3 A special case of Theorem 4

We remark that we can simplify our reasoning from the previous section to recover the
result of Götze and Gusakova for the case where m = 1 (which corresponds to Salem
numbers of degree 4). Indeed, we must again count the possible polynomials p(x),
this time without condition (c). From the previous discussion, we have the conditions

−2a > 2 + b > 2a, 0 < −a < Q + 3.

We also have a2 > 4b − 8, but it is easy to see that this condition is a consequence of
the first inequality above.

The number of solutions for the above inequalities is

Q+2∑

j=1

(4 j − 1) = 2Q2 + O(Q),

and this recovers Theorem 4 for m = 1.

123
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4 Cocompact case

In this section we consider a generalization of Theorems 1 and 2 to compact orbifolds.
Here the results are less precise and conditional on the gap conjecture of Marklof:

Conjecture 9 (Marklof 1996,Conjecture 1)Let�D be anarithmetic quaternion group.
Then the number of gaps in the complex length spectrum of H3/�D up to length
� = log x is given by

G(x) = κx + o(x), x → ∞,

where κ ≥ 0 is a constant depending only on �D, and small compared to
22d−3π |Da|−1/2. It could even be the case that κ = 0 for all �D. (Here d denotes the
degree of the field of definition K and Da is the discriminant of a = tr D.)

The conjecture is known to be true (with κ = 0) when �D = PSL(2, oK ) is a
Bianchi group, but it remains open even for the other arithmetic groups of the simplest
type. The main result of this section is the following theorem.

Theorem 10 A. Let�D beanarithmetic quaterniongroupof the simplest typewith the
totally real field of definition L, and letOD = H3/�D. Assume that Conjecture 9
holds for �D. Then OD generates

c1Q
1/2 + o(Q1/2), Q → ∞

Salem numbers of degree 4 over L that are square-rootable over L, where c1 =
22d−3π
|Da| − κ

4 with the notation as in Conjecture 9.
B. Let L be a totally real number field. There exists a constant c2 = c2(L) ≥ 0 such

that the number of Salem numbers of degree 4 over L that are square-rootable
over L and less than or equal to Q is

c2Q
3/2 + o(Q3/2).

Proof A. This part of the proof is similar to the argument in Sect. 3.1. The only
difference is that instead of Marklof’s Theorem 4(b) cited there we now apply
his Theorem 4(a) together with the gap conjecture (cf. Marklof 1996). Note that
in Theorem 4(a) [loc. cit.] there is an additional assumption that the set of traces
tr D1 is invariant under complex conjugation. This assumption allows us to prove
Lemma 2 [loc. cit.] which is then used in the proof of the theorem. It is well
known that arithmetic groups of the simplest type always have a totally real index
two subfield of their complex field of definition (see Maclachlan and Reid 2003,
Sect. 10.2). Therefore, we are not required to impose the aforementioned extra
assumption on the traces. The rest of the argument is the same as in Sect. 3.1.

B. We now use the general form of square-rootable Salem numbers given in Defini-
tion 5. We work over an arbitrary totally real field L , but consider only the Salem
numbers λwith degL(λ) = 4. The latter assumption allows us to apply the method
from Sect. 3.2.
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Counting Salem Numbers of Arithmetic... 563

First recall a more general lemma from Emery et al. (2019) (compare with
Lemma 8):

Lemma 11 (Emery et al. 2019, Lemma 8.2 (1)) Let λ be a Salem number, let L ⊂
Q(λ+λ−1) a subfield, and let p(x) be the minimal polynomial of λ over L. If p(x) =
x4 + ax3 + bx2 + ax + 1 ∈ oL [x], then λ is square-rootable over L if and only if
there is a positive element k of oL such that p(−1) = k2 and 4 − a ± 2k is a totally
positive element of L, in which case λ is square-rootable over L via 4 − a ± 2k.

As before, we seek to count the Salem numbers λ of degree 4 over L that are
square-rootable. This amounts to counting the polynomials

p(x) = x4 + ax3 + bx2 + ax + 1 ∈ oL [x]

for which

(a) p(x) is irreducible;
(b) its root λ is a Salem number of degree 4[L : Q], that is, the roots are

λ, λ−1, μ, μ−1 with λ ∈ R>1 and μ /∈ R, |μ| = 1, and for all non-identity
places σ : L → R the roots of pσ (x) have absolute value one (cf. (Emery et al.
2019, Proof of Theorem 5.2(1)));

(c) p(−1) = k2 for k ∈ oL , k > 0;
(d) 4 − a + 2k or 4 − a − 2k is totally positive;
(e) λ ≤ Q.

The proof proceeds much as in Sect. 3.2. Here, condition (c) is equivalent to

2 + b − 2a = k2, for k ∈ oL , k > 0. (7)

Now we turn our attention to condition (b), which allows us to deduce that

−a = λ + λ−1 + μ + μ−1 < λ + 3 ≤ Q + 3,

where the final inequality follows from condition (e). Moreover, since λ is a Salem
number, we know that λ + λ−1 ≥ 2, hence

−a = λ + λ−1 + μ + μ−1 > 0.

Combining the two displayed inequalities for −a yields

0 < −a < Q + 3. (8)

Furthermore, since pσ (x) has all of the roots with absolute value one, it must be the
case that |aσ | < 4 for any non-identity σ : L → R.

Next, we perform a change of variable, writing y = x + x−1. Then, if we define

r(y) = y2 + ay + b − 2,

123



564 M. Belolipetsky et al.

we see that p(x) can be expressed in terms of this new polynomial: x2r(x + x−1) =
p(x). In other words, condition (b) amounts to requiring that r(y) has two real roots,
with one > 2 and the other in the interval (−2, 2), whose σ -conjugates are all in the
interval (−2, 2). The roots of r(y) are of the form

−a ± √
a2 − 4(b − 2)

2
.

As a result, we need

(aσ )2 > 4bσ − 8 for all σ : L → R. (9)

Combining this with condition (7) yields

(aσ − 4)2 > 4(kσ )2. (10)

Since |aσ | < 4 for all non-identity σ : L → R we have

− 4 < kσ < 4. (11)

We need to impose some additional assumptions on kσ in order to satisfy condition (d).
More precisely, we have that either

aσ − 4

2
< kσ < 4

for all non-identity σ : L → R or that

−4 < kσ <
4 − aσ

2

for all non-identity σ : L → R. In both cases, this condition replaces (11).
Furthermore, taking into account the roots of r(y) and the intervals that they live

in, we deduce the following inequalities:

2 <
−a + √

a2 − 4(b − 2)

2
i.e., 4 + a <

√
a2 − 4(b − 2);

2 >
−a − √

a2 − 4(b − 2)

2
> −2 i.e., 4 − a >

√
a2 − 4(b − 2) > −4 − a; and

for all non-identity σ : L → R have 4 ± aσ >
√

(aσ )2 − 4(bσ − 2) > −4 ± aσ .

Next, we combine the lower bounds for the square-root that we obtained above, which
yields

a2 − 4(b − 2) > (4 + a)2, which simplifies to − 2a > 2 + b. (12)
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Likewise, we combine the upper bounds, which gives us

(4 − a)2 > a2 − 4(b − 2), which simplifies to 2 + b > 2a.

Note that this inequality is already a consequence of (7).
For the conjugates, since |aσ | < 4, we only have a non-trivial upper bound for the

square root, which gives

2 + bσ > ±2aσ .

Next, we combine (7) with (12), which produces a simple inequality

k2 < −4a. (13)

Observe that −16a ≤ (a − 4)2, which means that inequalities (9) and (10) are conse-
quences of (13).

To summarize, we have shown that the following inequalities must simultaneously
hold:

b = k2 + 2a − 2;
k2 < −4a;
aσ − 4

2
< kσ < 4 or − 4 < kσ <

4 − aσ

2
; (14)

0 < −a < Q + 3, −4 < aσ < 4.

Condition (14) should be interpreted as aσ −4
2 < kσ < 4 for all non-identity σ or

−4 < kσ < 4−aσ

2 for all non-identity σ .
The number of solutions can be counted in a manner similar to Marklof (1996,

p. 525), following standard methods from the geometry of numbers (see, for exam-
ple, Lang 1994, Theorem 1, Chapter V). The count that we obtain is of the form
c2Q3/2 + o(Q3/2), where c2 is a nonnegative constant. We include some details of
this computation in the next lemma.

Observe that we still have not used condition (a) in our count. As in the previous
section, the only way for p(x) to be reducible is for it to factor into a product of
quadratics, i.e.,

p(x) = (x2 + αx + 1)(x2 + βx + 1)

in oL [x], with one of them being the minimal polynomial of μ. Without loss of gener-
ality, suppose that the first factor has this property. Since its roots have absolute value
1 for all σ : L → R, we conclude that |ασ | < 2 for all σ . This gives finitely many
choices for α ∈ oL , and hence O(Q) choices for p(x). ��

In fact, we can use the geometry of numbers to give a bound for c2. Let h = [L : Q].
Then we have h embeddings of L into R given by σ1 = 1, σ2, . . . , σh . Consider the
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function

ϕ : L → Rh

ϕ(x) = (xσ1 , xσ2 , . . . , xσh ).

It is well-known that the image of oL is a full lattice whose fundamental domain φL

is a parallelotope of volume |DL |1/2.
Lemma 12 Let c2 be as in Theorem 10.B. Then

c2 ≤ 22h+2(12 + 7δ + δ2)h−1

3|DL | ,

where

δ = 2min
φL

max
diagonal

φL .

In other words, δ is twice theminimal value of themaximal diagonals of all the possible
parallelotopes φL corresponding to fundamental domains of the lattice given by oL .

Proof We concentrate on counting the number of a, k ∈ oL such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 < −a < Q + 3,

−4 < aσ < 4 ∀σ 
= 1,

k2 < −4a,
aσ −4
2 < kσ < 4 ∀σ 
= 1.

(15)

The result with −4 < kσ < 4−aσ

2 is analogous and will yield the same number.
Now we consider two coordinates, namely ϕ̃ : L × L → R2h given by ϕ̃(a, k) =

(ϕ(a), ϕ(k)). The image of oL × oL is a full lattice in R2h whose fundamental paral-
lelotope φ̃L has volume |DL |.

The number of solutions to (15) is approximated by the number of translates of φ̃L

by the image of oL × oL that fit in the set SL(Q, 0), where

SL (Q, δ) =
{
(x, y) ∈ R2h

∣∣∣ − δ < −x1 < Q + 3 + δ, |xi | < 4 + δ, |y1| <
√−4x1 + δ,

xi − 4

2
− δ < yi < 4 + δ, i = 2, . . . , h

}
.

More precisely, let n(Q, δ) be the number of translations of φ̃L which are contained
in SL(Q, δ), and let m(Q, δ) be the number of translations of φ̃L which intersect
SL(Q, δ). Let �(Q) be the number of lattice points in SL(Q, 0). Then we have

n(Q, δ)Vol(φ̃L) ≤ Vol(S(Q, δ)) ≤ m(Q, δ)Vol(φ̃L) (16)
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and

n(Q, 0) ≤ �(Q) ≤ m(Q, 0).

Let δ be equal to the length of the longest diagonal of φ̃L . Thus m(Q, 0) ≤ n(Q, δ).
This yields

n(Q, 0) ≤ �(Q) ≤ m(Q, 0) ≤ n(Q, δ). (17)

In textbook applications, one also normally writes m(Q,−δ) ≤ n(Q, 0). However,
we are not able to do this here because our set SL(Q, δ) is thin compared with the size
of δ in the directions where σ 
= 1. This is the reason why we get an upper bound, but
no lower bound.

Combining Eqs. (16) and (17), we obtain

�(Q) ≤ Vol(S(Q, δ))

Vol(φ̃L)
. (18)

Notice that

Vol(SL (Q, δ)) =
∫ δ

−Q−3−δ

∫ 4+δ

−4−δ

· · ·
∫ 4+δ

−4−δ

2(
√−4x1 + δ)

h∏

i=2

(
6 − xi

2
+ 2δ

)
dx1 . . . dxh

=(48 + 28δ + 4δ2)h−1 8

3
Q3/2 + Oδ(Q).

Combining with (18), we arrive at the claimed expression for δ, which is the maximal
diagonal of φ̃L and can therefore be bounded by twice the maximal diagonal of φL . ��

5 Comments About Other Dimensions

5.1 Dimension 2

We can consider the two dimensional case using the previous work of Bolte (1993)
instead of Marklof. Let O be a non-compact arithmetic 2-orbifold with associated
group �. By Emery et al. (2019, Theorem 1.1), for every hyperbolic element γ ∈ �

with λ = e�(γ ), we have that λ is a Salem number of degree 2 (recall that the Salem
numbers have even degree). It follows that a non-compact arithmetic hyperbolic 2-
orbifold generates Q1/2+O(1) different Salem numbers of degree 2 that are less than
or equal to Q.

On the arithmetic side, the counting here is very simple. For degree 2, we have
m = 0, and the problem of counting Salem number reduces to counting irreducible
polynomials of the form x2+ax+1 ∈ Z[x] under the condition that 0 < −a < Q+1.
It is also easy to see that the case a = −1 does not yield real roots, while a = −2
gives λ = 1. It follows that the number of Salem numbers of degree 2 less than or
equal to Q is Q − 2.
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So, in the logarithmic scale, a given non-compact arithmetic 2-orbifoldO generates
asymptotically 1/2 of all Salem numbers of degree 2.

5.2 Arbitrary dimension

Now consider an arbitrary dimension n > 1. By the prime geodesic theorem of
Margulis (1969) the number of geodesics of a compact hyperbolic n-manifold of
length at most � grows like e(n−1)�/(n − 1)�. If the geodesics all had distinct lengths,
then in dimensions 2 and 3 we would have about cQ different Salem numbers defined
by a single arithmetic manifoldM. This is a much larger number than what we expect
to obtain from Theorem 10. The issue here is not in the compactness ofM but rather
it stems from the fact that the geodesic spectra of arithmetic manifolds tend to have
large multiplicities.

Determining the multiplicity of geodesics with a given length is known to be a very
difficult problem. For example, Sarnak (1982) studied this problem for the modular
surfaces H2/�, where � is a congruence subgroup of PSL(2,Z), in which case the
multiplicities are the class numbers of indefinite binary quadratic forms. He used
Selberg’s trace formula to determine the asymptotic growth of their average sizes.
Subsequent papers by Bolte and Marklof cited above treat the mean multiplicities in
the spectra of 2 and 3-dimensional arithmetic orbifolds. Very little is known about
multiplicities in higher dimensions. The relation between the geodesic spectrum and
the distribution of Salem numbers that we investigate in this paper allows us to obtain
many new multiplicity bounds. For example, we can now can prove Proposition 3,
which we restate below.

Proposition 3 LetO be a non-compact arithmetic hyperbolic orbifold of even dimen-
sion n ≥ 4. Then the mean multiplicities in the length spectrum of O have a strong
exponential growth rate of at least

〈g(�)〉 ∼ c
e( n2−1)�

�
, � → ∞,

where c is a positive constant.

Proof The number of closed geodesics ofO of length at most � is∼ e(n−1)�/(n−1)�.
Note thatO is not compact and has singularities sowe cannot applyMargulis’ theorem;
we refer instead to Gangolli and Warner (1980, Proposition 5.4) where the result is
obtained in this setting. Now by Emery et al. (2019, Theorem 1.1) each geodesic
corresponds to a Salem number e� of degree≤ n (herewe use that n is even and that the
degrees of the Salem numbers are even). By Götze and Gusakova (2019, Theorem 1.1)
the total number of such Salem numbers is bounded by ce(n/2)�. Hence, on average,
the geodesic lengths have to appear with multiplicity at least ∼ e(n/2−1)�/(n − 1)�. ��

Extending this result to compact orbifolds and to odd dimensions requires finer
counting of square-rootable Salem numbers and relative Salem numbers, i.e., those λ

for whichQ(λ+λ−1) contains a fixed field L . We leave these intriguing problems for
future research. It would also be interesting to find the proportion of Salem numbers
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defined by a given arithmetic manifold or orbifold. At this point, we cannot discount
the possibility that in large dimensions the exponent of the growth function of such
Salem numbers is the same as the exponent in the total growth of the admissible Salem
numbers.
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